MESSAGE FOR MY $2023 \mid 24$ STUDENTS:
This tide pack was designed to teach students about pivotal functions. It was written before I took over Ec400 (where I introduced pivotal functions to you). So there is nothing new in here. I'm just making it available in case anyone wanted a refresher. All the hest. RAGUIR $(24 \mid 11 / 23)$

$$
\frac{\text { EC402 (20/21)-COMMON QUESTION - PIVOTS /C.I.S }}{\text { RAGVIR'S SPEAKING NOTES (UNOFFICIAL CONTENT) }}
$$

ANOTHER SLIDE PACK?
"\&agur You're the Best. I wish You Weat my undergrad prof." Aww...shucks... thanks! Flattery helps. Here is some free info. on intervals.
"FagVir, Why Shouls My Real MG Stats teacher be in Prison?" Becaus ' helshe taught you C.I.s without mentioning pivots, and it is (or should be) a criminal offence.
"RAGUIR Bur That's Just Another Extra Concest You hre Throwing htme" Well, the aternative is to just memorise things like
"if σ^{2} is known, it's a z-score buk It σ^{2} is klown, its a z-score but
if σ^{2} is unknown, it becomes a t-stat. Yay!",
and then pass your UG exaus but as soon as you hit questions like Q1 of PST, you don't know where to eves begin. Up to you.
"RAgUIR ... YOIRE ACTUALLY THE WORST."
Sigh... I know ... I know...

WHAT ARE WE TRYING TO DO?
Point estimation

- Let $x_{i} \stackrel{\text { III }}{\sim} N\left(\mu, \sigma_{N}\right)$ for $i=1, \ldots, N$. We saw (in "PushingLinits") that $\bar{x}_{N}:=\frac{1}{N} \sum_{i=1}^{N} x_{i}$ is the ML estimator for μ.
- This gives us a point estimate. What if we wart an interval estimate (eg: $\bar{x}_{N} \pm$ something)?

Interval Estimation

- A $100(1-\alpha) 2_{0}$ C.I. for μ is given by $\left[T_{L}(x), T_{u}(x)\right]$ where $T_{L}(x)<\bar{x}_{N}$ and $T_{n}(x)>\bar{x}_{N}$ are chosen such that

$$
P\left(T_{L}(x)<\mu<T_{u}(x)\right)=1-K
$$

for some given α.
Vmake sure you can translate into plain english. IT IS NOT "the probability that μ is between $T_{L}(x)$ and $T_{u}(x)$ ", please!

WHY DO MY EC402 STUDENTS STRUGGE WITH THIS? So how do we come up with $T_{L}(x)$ and $T_{u}(x)$? Well, let's look at this lefter from your UG teacher...
Dear ex-Student of mine,
Hope you are well. I'm in prison right now for crimes against statistics. But let me remind you what I taught you in the good old days...

- If X_{i} s are Normal, I said boo at " $\sqrt{N}\left(\bar{X}_{N}-\mu\right) \mid \sigma$ ", but I never fold you why.
- If σ^{2} is known, I said use a " z score "but I never fold you why. Just use the $N(0,1)$ tables, and be satisfied.
- If σ^{2} is unknown, we can use a "t-statistic but I never told you why. Just remember to replace σ with s, ok? Oh...and use the tables.
- When the situation is more complex (eg. difference of group means, etc.), then

I gave you additional expressions to memorise but I don't remember those myself to how can I ask you to remember?!
To SUMMARISE, if $x_{i} \stackrel{11 D}{\sim} N\left(\mu_{1} \sigma^{2}\right)$ for $i=1, \ldots, N$, then \ldots

- If you know σ^{2}, get a $100(1-\alpha) \%$ C.I. as
$\bar{x}_{N} \pm \frac{\sigma}{\sqrt{N}} z_{1-\frac{\alpha}{2}}$, using $N(0,1)$ tables; AND
- If you don't know σ^{2}, get a $100(1-\alpha)$ \% C.I. as

$$
\bar{x}_{N} \pm \frac{s}{\sqrt{N}} t_{N-1,1-\frac{\alpha}{2},} \text { using } t_{N-1} \text { tables. }
$$

Note: If you get any other question that I did not cover whatever I have taught you will be impossible for you to apply since I taught it so badly.

Hope it helps! Or Not!
Mr. Generic MG Teacher

Pivotal functions: Some Stood Notes Below...

- for a proper definition, look up any stats book. Something like this...

Definition of a pivotal function: Consider a sample Y with density $f_{Y}(y \mid \theta)$ and suppose that we are interested in constructing an interval estimator for θ. A function $G=G(Y, \theta)$ of Y and θ is a pivotal function for θ if its distribution is known and does not depend on θ.
My ST 202 students typically didit find this enough for intuition so I made the notes belau for them. Hope it helps you too. After reading it see my answer to
Q1, PS7. Now, can you see how I came up with various pivots?

Tivotal Functions - A friendily 03103119 Introduction

QUESTION: HOW DO I THINK ABOUT PIVOTS? I GET THE THEORY, BUT HOW TO APPROACH THE HOMEWORK?
just an
example to SETUP: $x_{i} \stackrel{\text { MD }}{\sim} N\left(\mu, \sigma^{2}\right)$ with σ^{2} known for $i=1, \ldots, N$. example to
fix ideas. GOAL: To CONSTRUCT CI'S FOR μ, UNKNOWN
(I) Q: So why is a Pivot useful? Why is it even called a Pivot?

A: Recall how we construct CI's...
en: Given the "setup" above, we can say (usual STl02 stake tables stuff): Since we have normality", we can always find $a q_{1}$ and q_{2} st.
$P\left(q_{1}<\frac{\sqrt{N}(\bar{x}-\mu)}{\sigma}<q_{2}\right)=1-\alpha \quad$ where α is typically like 0.05 or 0.01 .
Indeed from stats tables, $q_{1, \alpha / 2}=0.025=-1.96$

$$
q_{2}, 1-\frac{\alpha}{2}=0.975=1.96
$$

So, we know that

$$
P\left(-1.96<\frac{\sqrt{N}(\bar{x}-\mu)}{\sigma}<1.96\right)=0.95
$$

Now, think of the highlighted part as the Pivor. Why? Because we will isolate μ in the middle and move all the other"obsecved" stuff to the others sides of the inequalities. We are "pivoting" around this object, right? (I will wave my hards a lot and show what I mean in the seminar!)

$$
\text { ie. } P\left(\bar{x}-1.96 \frac{\sigma}{\sqrt{N}}<\mu<\bar{x}+1.96 \frac{\sigma}{\sqrt{N}}\right)=0.95
$$

- make sure you can work this out very clearly yourself. - I will show peps in the seminar.

So, we use the above knowledge as motivation to come up with an interval estimator for μ.
i.e. a loo $(1-x) \eta_{0}$ C.I for μ is given by:

$$
\bar{x} \pm 1.96 \sigma / \sqrt{N}
$$

(II) Q: The above was an illustrative example. Let's ale about how to find appoparate pivots from a practical standpoint.
Note: Matter has giver you the Offreral definition. Mon reed to know this. What follows below is just a loose intuitive "Raguvi's guidelines" type of discussion for you.
A: Keep the "GoAL" in mind. Now think about guessing a suitable pivot.
(a) - It needs to contain μ, right? Otherwise, we would do tonnes of algebra and there would be no probability, statement in the end involving our unknown parameter, the very object of our interest!
(b) - Its distribution should be kNown and should not depend on any unknown parameter. Otherwise, how would we look vp a lovely stats Table and dig out values of the relevant quartiles q_{1} and q_{2} ?!
(c) - IE should not Contain anything unknown in it. Otherwise, after you do the algebra, your get say:

$$
?\left(\bar{x}-1.96 \frac{\sigma}{\sqrt{N}}<\mu<\bar{x}+1.96 \frac{\sigma}{\sqrt{N}}\right)=0.95
$$

... then your try to plug the lower and upper limits of the interval into your calculator. Here, I assumed o was known (see first slide) So I had no problem. But say σ was unknown, yovid be utterly stuck!!
[Test yourself: What would be an appropriate pivot if σ^{2} was really not known in my example?]

So (a), (b), and (c) allow you to construct a suitable pivot. There is an additimal point which allows you to construct the "best" pinot.
(d) - It should not "waste" info. If you have info, use it! For example, if you have N observations, use the m all. If you know o , dort try to estimate it. This will give you the "tightest" interval estionators (fol a given α).

I really hope this helps. I will explain all this in my seminars my way. See you soon! -RagviR.

BACK TO EC4O2 PST QI

- I warred a ?.I. for y_{12} :
\Rightarrow I needed a pivot which (i) I knew the distribution of (fully);
(ii) Contained y_{12};
(iii) contained nothing else unknown;
(iv) didn't waste all info.
indeed, $\left(\hat{y}_{12}-y_{12}\right) / \operatorname{var}^{112}\left(\hat{y}_{12}-y_{12} \mid x\right)$ worked perfectly.
- I wanted a pivot for M_{12} :

The above would be useless. Indeed,

$$
\left(\hat{y}_{12}-m_{12}\right) \mid \operatorname{var}^{112}\left(\hat{y}_{12}-M_{12} \mid x\right) \text { was suitable. }
$$

[Same logic works also for Q2]

